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Transition to Chaos in an Open Unforced 2D Flow
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Unsteady low Reynaolds number flow past a two-dimensional airfoil
is studied numerically. The purpose is to (1) determine the bifurcation
sequence leading from simple periodic flow o complex aperiodic flow
as Reynolds number is increased, (2) identify and quantify the chaos
present in the aperiodic flow, and (3) evaluate the role of numerics in
modifying and contralling the observed bifurcation scenario, The full
two-dimensional Navier-Stokes equations are solved for a NACA 0012
airfoil at M =10.2, a=20° and Re <4000. The Navier-Stokes code
ARC2D in an unsteady time-accurate mode is used for most of the
computations. For each Reynolds number studied., the asymptotic
behavior of the flow is studied using time delay reconstructions, Poin-
caré sections, and frequency decompositions. The system undergoes a
period-doubling bifurcation to chaos as the Reynolds number is
increased from 800 to 1600, with windows of periodic behavior in the
chaotic regime past 1600. The observed chaoctic attractors are further
characterized by estimates of the fractal dimension and partial
Lyapunov exponent spectra. Tests are made on the effects of varying
mesh resolution, added artificial dissipation, and order of spatial or tem-
poral accuracy of the numerical method. It is shown that the gbserved
chaos does not arise due to numerical effects alone, but is a true solu-
tion of the model system. Local Lyapunov exponent analysis is used
to determine the physical mechanism behind the period-doublings.
© 1393 Academic Press, Inc.

I. INTRODUCTION

It is a mathematical fact that aperiodicity can in some
cases be described as motion on a low-dimensional chaotic
phase space attractor. The concept of chaos was originally
brought into the physical sciences as a means of describing
turbulent fluid flows [1]. Low-dimensional chaos has now
been observed in a wide range of hydrodynamic systems.
These include simple models of flows (e.g., the Lorenz equa-
tions [2, 3]), experimental flows (e.g., Taylor—Couette flow
f4]), and more recently in numerical simulations (e.g.,
Taylor-Couette flow [5] and turbulent plane channel flow
[6]). Most of the cases studied to date are closed flow
systems or open flow problems with forcing [ 7]. There have
been no reports of unforced open flow experiments showing
low-dimensional chaotic behavior. Chaotic solutions have
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been observed in several two-dimensional numerical
simulations of open flow systems at low Reynolds numbers
and low Mach numbers. For example, Fortin er al. [§]
presented results for a cascade flow simulation which
exhibited a region of chaos as a function of Reynolds num-
ber. Ghia ef al. [9] have examined high angle of attack
incompressible airfoil simulations with chaotic solutions
at low Reynolds numbers. What is lacking is a complete
bifurcation scenario demonstrating the transition to low-
dimensional chaas for a numerically computed open flow.
Once such a system is in hand, then the variety of difficult
questions concerning the definition of attractors for open
flow systems can be addressed in a systematic fashion.

The open flow system studied here is compressible flow
over a two-dimensional airfoil at high angle of attack and
low Mach number. The particular case is a NACA 0012 air-
foil at angle of attack & = 20° and Mach number M _, =02,
The bifurcation parameter is the Reynolds number, which is
varied in the range 600 < Re < 3500. In this range the flow
is unsteady and flowfield visualizations show a shear layer
off the leading edge, massive separation over the upper
surface, and trailing edge vortices. These common features
simplily the comparison of flows at different Reynolds
numbers: no fundamentally new flow features appear, so the
principle differences between flows are in temporal evolu-
tion, not spatial evolution.

The numerical model used in this study is discussed in
Section IT with a brief description of the various parameters
of the algorithm that affect the results. The bifurcation
diagram obtained for a “standard” algorithm is presented in
Section I{I. The effects of mesh refinement and algorithm
parameter variation on the observed bifurcation sequence,
comparisons using other numerical codes, and the
possibility that the observed chaos is numerically generated
are discussed in Section IV. The chaotic states observed past
the transition are analyzed in Section V, and Section VI
contains a summary of the results as well as some conclud-
ing remarks. A demonstration of numerically generated
chaos for a simple model equation is included in an
appendix.
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1. NUMERICAL MODEL

The model equations are the full two-dimensional
Navier-S8tokes equations. The numerical code used here,
ARC2D [10], solves these equations in strong conservation
law form and general curvilinear coordinates, A first- or
second-order-accurate in time approximate factorization
scheme with second- or fourth-order-accurate space dif-
ferences is employed. For smooth geometries with adequate
mesh resolution there would be no need for artificial dissipa-
tion at the low Reynolds numbers used here. Nondissipative
central differences, along with the viscous terms, are ade-
quate in such cases to stably compute the flows. However,
the sharp trailing edge of the airfoil, coupled with the highly
energetic nature of the flows computed, necessitates the use
of some form of artificial dissipation. For most of the results
presented, a low amount of artificial dissipation is added to
stabilize the computations [11]. Zero velocity, adiabatic
wall conditions are used at the airfoil surface and charac-
teristic boundary conditions are used at the free boundaries.

Three successively finer “C” type topology meshes (grids)
are employed with designations A {169 % 49), B (369 x 89),
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FIG, 1. Two views of the mesh topology of grid A.
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and finally C (849 x 161). Grid A is shown in Fig. {. Mesh
points were distributed equally between the airfoil surface
and the wake, since both the local flow structure near the
airfoil and the shed vortices downstream of the airfoil are of
interest. For exampie, grid C has 200 points in the wake in
the streamwise direction. The outer boundary locations
were placed at 12 chords from the airfoil and the normal
spacing at the surface was varied from 0.01 for grid A, 0.005
for B, and 0.002 for C. At the Reynolds numbers of interest
these mesh distributions give a reasonable mesh refinement
sequence.

The time step used was 4¢=0.05, which corresponds to
free stream flow traveling one chord in 100 iterations,
N = 100. Sensitivity to initial conditions was studied by star-
ting from various initial solutions; for example, some cascs
were impulsively started from free stream and then com-
pared with cases started from fully developed flow at a lower
or higher Reynolds number. In all cases examined here the
results were independent of the initial conditions. The runs
were performed on CRAY2 and CRAY-YMP computers
and typically required 4 to 8 h of CPU time for each fully
developed flow. Long evolution times are necessary to relax
transients in the computations; near bifurcations the mean
transient hifetime can be very large.

III. OBSERVED BIFURCATION SEQUENCE

The largest number of trials was conducted on grid A. In
this section, the various observed states and the overall
structure of the bifurcation sequence for grid A will be
presented and explained. The observed bifurcation diagram
is shown in Fig 2. The bilurcation parameter is the
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FIG. 2. The bifurcation sequence observed as Reynolds number is
varied for the model system. The base periodic state is labelled 1, and the
subharmonic states are labelled by the number of fundamental periods
required.
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Reynolds number of the flow. At the high angle of attack
used here, flow over the model airfoil is unsteady at all
Reynolds numbers; thus, the simplest observable behavior
is periodic. The system apparently makes a transition from
periodic behavior to chaos via a period-doubling cascade.
After the first occurrence of chaos, windows of periodic
behavior reappear for some range of Reynolds numbers,
until finafly a regime in which no periodic states have been
found is reached. Trials at fixed Reynolds number and vary-
ing angles of attack indicated that the same bifurcation
scenario, i.¢., period-doubling, occurs as the angle of attack
15 increased. The method used to obtain the bifurcation
diagram mimics experiment: at a low value of Reynolds
number the flow is evolved until it reaches an asymptotic
state, and then the Reynolds number is increased or
decreased in small steps. At each step, the flow is again
evolved until the asymptotic behavior appears. For this grid
and the standard time step, no hysteresis was observed at
any Reynolds number.

The development of the flow at Re = 800 from free stream
initial conditions is depicted in Fig. 3. First, boundary layers
grow on the upper and lower surfaces of the airfoil. A

FIG. 3. Mach contours af selected times in the initial devefopment of
the flow for Re = 800.
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trailing edge starting vortex is shed and the upper surlace
boundary layer eventually grows to a significant height and
separates. Vortices are now generated in the free shear layer.
A vortex shedding process commences: as the large scale
vortex structures pass over the upper surface at the trailing
edge, an image vortex is shed at the trailing edge. The shed
vortices are convected downstream, and the process repeats.
At this Reynolds number the shedding process is periodic.

In the language of dynamical systems theory, the periodic
behavior for Re = 800 implies that the system has relaxed to
a limit ¢ycle or periodic attracior. Various aspects of the
motion on this attractor are illustrated in Fig. 4, using a
time series of the vertical component of velocity at a point
near the trailing edge of the airfoil. Our presentation of the
observed states will concentrate on the attractors found
using this local guantity. The physical location will
remained fixed for a particular grid and the range of Re
studied. In the case of differing grids the physical location of
the sample point is chosen consistently. If the flowfield is
sampled at very distant spatial points or at inappropriate
angles to the airfoil the velocity fluctuations become unob-
servably small. The spatial dependency of the observable
dynamics is an interesting study in itself, beyond the scope
of this paper, and is currently being investigated. Time series
of a spatially averaged quantity, the coefficient of lift for the
flow past the airfoil, display the same basic bifurcation
sequence as does the local measurement used here, although
an extensive analysis in the chaotic regimes has not been
performed using this variable.

A portion of the velocity time series for Re = 800 is shown
in Fig. 4a. A power spectrum obtained from a longer time
series is given in Fig. 4b. The peak at f,=0.0046
corresponds to the fundamental frequency of the single
peried shedding. In Fig. 4¢ the attractor is illustrated using
the method of time delay reconstruction, This now-standard
technique allows the reconstitution of full phase space
behavior from scalar time series observations: given a time
series of a scalar observable v(r), the reconstructed vector
observable is (p{r), o{t+1) ..+ (m—1)1)). If the
system attractor in the original full phase space is
n~dimensional, then the m-dimensional reconstructed
attractor will have the same invariant properties, e.g., [ractal
dimensions or Lyapunov exponents, for all m over a mini-
mum value that is not greater than 2n + 1 [127. In practice,
if the dimension of the original attractor is not known, the
reconstruction dimension is increased until the estimates of
those invariant properties cease to change. The illustrations
of reconstructed attractors in this paper will be two-
dimensional, but for computational purposes higher
reconstructions are necessary. The time delay for all of the
reconstructions presented here was about one guarter of the
mean orbital period.

The periodic behavior at Re = 800 gives way to a period-
doubled state as the Reynolds number is increased. Time
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series data are used in Fig. 5 to illustrate the period-doubled
flow at Re=1075. The subharmonic nature of the bifurca-
tion is evident in the time series (Fig. 5a) and in the power
spectrum (Fig. 5b} a second peak appears at a frequency
exactly half of the fundamental frequency. The apparent
crossing of trajectories in the attractor reconstruction
(Fig. 5c) is not real: in a three-dimensional reconstruction
the simple two-loop attractor remains and the loops are
separated.

The physical significance of the bifurcation is that the
shed vortices become alternately more and less intense than
the vortices shed in the periodic case. The physical
mechanism that causes this behavior will be examined in
some detail in Section V.

As the Reynolds number is increased further, a series of
period-doubling bifurcations occur. The numerical evidence
indicates that this sequence is part of a period-doubling
cascade culminating in low-dimensional chaos. Power spec-
tra for period 4 through period 32 states are shown in Fig. 6.
The subharmonic adding of frequencies is clearly apparent.
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The principle characteristics of a period-doubling cascade
are a geometric decrease in parameter window width for 2”-
periodic behavior as # increases, and also the culmination of
the cascade in a transition to chaos, past an accumulation
point at which # goes to infinity. Both of these properties
are essentially impossible to prove numerically, but the
collected evidence is convincing. While the precise locations
of the observed period-doubling bifurcations have not been
determined, it is clear from Fig. 2 that the periodic window
widths decrease rapidly. The numerical evidence suggests a
continued geometric decrease in window width after the
period-64 window, with an accumulation point between
Re = 1580 and Re = 1583.

Feigenbaum [13] discovered that a universal geometric
scaling factor exists for the window widths in period-
doubling cascades of unimodal one-dimensional maps, in
the limit as the period goes to infinity. This “Feigenbaum
number” is approximately 4.67. In our system, the limiting
scaling factor for the observed windows is about 4.5, with a
large amount of uncertainty. The scaling factor in the limit
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FIG. 6. Power spectra for periodic states in the period-doubling cascade: {a) Re = 1400, periodic 4; (b) Re = 1525, period 8; (c) Re = 1573, period

16; and (d) Re = 1580, period 32.
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of infinite-period flow may converge to the Feigenbaum
number, but this would be extremely expensive to verify.
The longest period observed so far is the period-64
behavior. One period of evolution in this regime requires
approximately 2500 cpu s on a Cray-XMP and the analysis
requires multiple orbits for good information extraction {on
the order of 10 orbits seems sufficient). Higher periodic
states would require too much time to be worthwhile, even
if well-relaxed initial conditions were in hand. As a period-
doubling bifurcation is approached, the average relaxation
time for transients diverges like the inverse square root of

the distance from the bifurcation. In the high-period
windows, no parameter setting is far from a bifurcation
point, and the relaxation times can become enormous.
Nevertheless, the sequence of observed states and the rapid
decrease in the corresponding parameter window widths are
convincing evidence for a period-doubling cascade.

The cascade should end at a period-doubling accumuia-
tion point, followed by (low-dimensional) chaotic behavior.
At Re= 1600 (depicted in Fig. 7), the system evolution is
aperiodic. The power spectrum has a broadband compo-
nent well above the computational noise floor, and the

FIG. 10. Logistic map z"*' = Rz"(1 — "} for R =3.0-4.0.
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banded structure typical of chaotic attractors is apparent in
the time delay reconstruction. This case was run for an
extremely long time (on the order of 300,000 time steps}):
this 1s not a transient, but is the asymptotic state. In the next
section of this paper it will be established that the Re = 1600
behavior is low-dimensional chaos. '
The system response for Reynolds numbers between 1600
and 3000 is diagrammed in Figs. 8 and 9: a series of chaotic
states interspersed with periodic windows. The periodic
windows appear abruptly from chaos as the Reynolds num-
ber is increased, although there is some concentration of the
chaotic probability distribution just prior to the transition.
All of the periodic windows that have been studied in detail
show a period-doubling return to chaos. Past Re = 1600, the
system state is chaotic up to about Re=1695, where a
period-14 window of behavior (Fig.8a} appears. This
window ends in a period-doubling bifurcation to a period-
28 state at around Re = 1706, and several successive period
doublings are observed before chaos returns around
Re = 1715. The chaotic behavior after Re= 17135 is similar
to that seen at Re = 1600. Another periodic window with a
period-6 base state (Fig. 8b) begins at about Re = 1825. It
also undergoes a period-doubling cascade back to chaos.
The period-12 state at Re = 1832 is shown in Fig. 8c. Other
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periodic windows are seen as the Reynolds number is
increased further; e.g., a period-10 window begins around
Re=1940, see Fig.8d. Eventually, however, periodic
windows cease to appear. The nature of the chaotic
behavior changes as well. At Re = 2000, in Fig. 9a, the chaos
is still somewhat similar to that seen at Re =1600, but at
Re = 3000 (Fig. 9b) the chaos is higher-dimensional, as will
be shown below.

Putting aside for a moment the dimensionality of the
chaotic states, the bifurcation scenario described above is a
familiar one. Simple low-dimensional maps, such as the
logistic or Hénon maps, also display an initial period-
doubling cascade to chaos followed by windows of peri-
odicity embedded in chaos. Figure 10 shows part of the
bifurcation sequence for the logistic map. There are an
infinite number of periodic windows for the logistic map; if
this is the case in the model system, one can only hope to
discover the largest of them given the limits of computer
resources. [nterestingly, the largest periodic windows in the
logistic map prior to the period-three window are of periods
14, 6, and 10, just as was found in the airfoil simulations.
Another similarity between the logistic map bifurcation
structure and the airfoil simulations is the banded nature of
the chaotic attractors. For the logistic map, note the merg-
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ing of the two chaotic bands at about R = 3.67 that allows
stable odd-period orbits to appear. Figure 11 is a set of
Poincaré sections for three chaotic states in the airfoil
simulations at increasing values of Reynolds number. The
sections were obtained by finding the intersections with a
transverse plane for a three-dimensional reconstruction of
each attractor. At Re = 1600, two distinet chaotic bands are
present, and intersections occur alternately between the
right and left bands of the section. The two bands are
approaching one another at Re = 1800 and merge before
Re =2000. Finally, the Re=3000 result shows a more
uniform distribution of intersections. The merging of the
two bands would allow the appearance of odd-period
windows, but these have not been observed. Small windows
may exist, but past Re = 2000 the chaos in the system begins
to become higher-dimensional, making a transition back to
periodicity more and more unlikely. It is not yet possible to
say whether the merging of the two chaotic bands directly
signals the onset of higher-dimensional chaos. It has not
been possible to extract a plausible one-dimensional map
from the observed low-dimensional chaos, and no direct
link has been established between the logistic map and
the airfoil flow, However, the similarity between the two
bifurcation sequences is evidence suggesting that some
relatively simple mechanism is responsible for the transition
to chaos in the airfoil simulations.

JV. MESH REFINEMENT, ALGORITHM
PARAMETER STUDIES

The numerical solutions presented above are at best
approximate solutions of the Navier-Stokes equations. The
authors know of no experimental data to support the
resuits, although there have been other similar computa-
tional results by Fortin ¢ al. [8] and Ghia et al. [9]). To be
confident that the inaccuracies and approximations of the
numerical simulation do not lead to inconsistencies with the
real physics of the fluid flow, it is necessary to test the effect
of varying the numerical model. This includes studies with
different spatial and temporal resolution as well as studies in
which the spatial and temporal differencing schemes are
varied.

Mesh refinement studies were performed using grids A, B,
and C. The results on the finer grids (B and C) are not quite
as extensive due the exhaustive computation time required.
Typically on the order of a 100,000 iterations are needed to
get good samples for the above analysis. Figure 12 shows
time-delay reconstructed phase diagrams for grid B solu-
tions at various values of Reynolds number. For this grid
the first period doubling takes place around Re= 1100,
which is similar to the location of this transition for the
coarser grid A case. In contrast, the second period doubling
for grid B occurs at Re = 2600, by which time the grid A
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bifurcation sequence has completed the cascade to chaos. At
Re =2800 the grid B simulation displays either high-order
periodic or weakly chaotic behavior leading to the definite
chaotic resuit for Re = 3000. The results are strong evidence
that the period-doubling cascade observed with the coarser
mesh are still present, although the location of the period-
doubling accumulation point and the transition to chaos
has been shifted to higher Reynolds numbers. Limited
results for the fingst mesh, C again show a period-2 selution
is near Re = 1100 and chaos for Re = 3000. The structure of
the low is more complicated for grid C, as shown in Fig. 13.
This mesh captures more downstream structure of the
shed vortices and one even sees pairings of the vortices.
Figure 13d shows, for comparison, a coarse grid A result,
where the downstream flow is unresclved and washes out
the shed vortices. These results estabiish that the basic
physical process which gives rise to period doubling in the
system is present over a wide range in mesh fineness and
that the mechanism does not involve vortex interactions far
from the airfoil. It seems very likely that a complete period-
doubling cascade occurs for all of these meshes as well. The
detailed study needed to find the bifurcation points for more
of the cascade in the finer meshes would be extremely expen-
sive in terms of computer resources and thus has not been
performed.

Besides mesh refinement, there are other tests of accuracy
and consistency which can be performed. Recall that the
sharp trailing edge of the airfoil necessitates the addition
of artificial dissipation to stabilize the computations. The
values are kept as low as possible and a study was
performed, where the coefficients were increased and
decreased. At the lowest values possible and for typical
values suggested in papers on the subject {117, the result
was a shifting of the period-doubling Reynolds numbers,
but the sequence of doublings to chaos still exists. At large
values the resulting flows were damped and in the extreme
cases the unsteadiness was completely suppressed, although
these represent unreasonable values.

Results from upwind, TVD algorithms have also been
obtained with qualitatively similar solutions. Results from a
third-order accurate upwind based Roe Riemann solver
scheme are shown in Fig. 14 for grid A and the M =02,
o =20° conditions. Single period shedding persists to a
higher Reynolds number (up to Re=x 1800) with this
numerical model than was observed with ARC2D at
the same parameters. A fuzzy period-2 result is seen
at Re=2000, with a more transient looking result at
Re=2100, and a chaotic result at Re=2200. Results at
higher Reynolds numbers are definitely chaotic. The artifi-
cial dissipation of this scheme is tied in with the nature of
the upwind differencing and, although it is less dissipative
than, for instance, a first-order scheme, the amount of dis-
sipation does influence the results. In fact, a first-order
upwind resuit would compietely suppress the unsteadiness
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FIG. 12. Time delay reconstructions at s¢lected Reynolds numbers for grid B.

and produce a fixed-point solution. Various schemes of this
sort are possible, but the basic result is that the more
dissipative forms (upwinding produces inherent artificial
dissipation due to truncation error), produce similar results
to the large artificial dissipation results mentioned above.
For the low dissipation methods, the results are similar to

the unsteady sequence described above, 1.e., a sequence of

period doublings cascading to chaotic results at high
Reynolds numbers.

Time accuracy has been cvaluated by comparing first-,
second-, and third-order results for selected cases. The time
step was also halved, quartered, and doubled to assess the
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FIG. 13. Mach contours at selected Reynoids numbers for grid C.
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time accuracy required. At the time step used here, all the
results were consistent across different time accuracies.
Most of the results shown were obtained using first-order
time accuracy, since that option requires the least amount of
CPU time per step.

The tests of resolution and other parameters present
strong evidence that the chaos observed in these numerical
simulations is also present in the true, exact solutions of the
underlying equations of motion. It is not possible to ¢om-
pletely eliminate the possibility that the chaos is numerically
generated, however, and it is therefore important to under-
stand how a numerical method can cause spurious choas to
appear. The simple model problem presented in the
Appendix indicates that numerically generated “spurious”
behavior can occur when numerical methods are pushed
past their linear stability bounds. In fact, if the bifurcation
that gives rise to the spurious solution is subcritical, such a
solution can be observed somewhat below the linear
stability bound. While there is no direct evidence that
numerical solution of the Navier-Stokes cquations suffer
from the same instabilities, this possibility must be con-

FIG. 14. Time delay reconstructions at selected Reynolds numbers for a third-order upwind scheme.
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sidered. To test the airfoil results, a numerical experiment
was performed using a third-order Runge-Kutta (RK3)
time integration. For RK3 the linear stability bound
corresponds to a CFL number of 2.5175 for the above ODE,
Eq. {2}, and the bifurcation boundary coincides with the
linear stability boundary. Computations were performed
using a CFL number of 1.75, well below this limit, for the
Re=3000 case. In this case the number of iterations
required is increased by a factor of 10 and therefore a com-
plete description of the results is not possible. Figure 15
shows the time delay reconstruction and frequency decom-
position for the RK3 method which is similar to the
previous Re=3000 results. The fundamental frequency,
fo=0005, compares well with the larger time step, implicit
algorithm data. Results from the standard code at the same
time step used for the RK3 integration compared even
better. The results remain chaotic and similar to the large
time step data supporting the conclusion that the cascade to
chaos is not driven by the numerical discretization.

V. ANALYSIS OF CHAOS

The numerical evidence presented in the previous sections
indicates that a sequence of bifurcations culminating in a
period-doubling cascade takes the model system from
unsteady but periodic behavior to chaos. While the details
of this bifurcation sequence are affected by the choice of
numerical model, the same basic route is shown to exist over
a wide range of parameterizations. Assuming then that the
chaos is a real feature of the two-dimensional flow in this
Reynolds number regime, the next step is to characterize the
chaotic flows using some standard tools from nonlinear
dynamics. This analysis will be restricted to the coarse grid
cases presented in Figs. 4 through 11. The Re=3000
aperiodic behavior 1s clearly more disordered than the
Re = 1600 or 2000 cases. This distinction can be made more

quantitative by obtaining fractal dimension estimates and
partial Lyapunov exponent spectra for these flows. The
Lyapunov exponents, which will be described in some detail
below, can be estimated etther from time series data or by
solving an augmented set of equations for the time advance-
ment of the system. Given sufficient computer resources, the
latter approach will yield more accurate estimates. Of
course, experimentalists are limited to the data sets they
have in hand, and even if the flow can be solved for numeri-
cally, the expense may be prohibitive. For purposes of com-
parison, therefore, both approaches will be tested here.
The Lyapunov exponent spectrum of an attractor is
perhaps the most complete characterization possible of the
geometric properties of an attractor and the dynamical
properties of a flow on that attractor. The Lyapunov
exponents {1} measure the long-time average exponentizal
growth or decay of infinitesimal perturbations to a phase
space trajectory. The number of Lyapunov exponents thus
equals the number of independent phase space directions:
an attractor in an N-dimensional phase space has N
Lyapunov exponents, while an attractor for a system
governed by partial differential equations has an infinite
nomber of Lyapunov exponents. Negative Lyapunov expo-
nents correspond to the decay of perturbations towards the
attractor. If an attractor has a positive Lyapunov exponent,
perturbations on the attractor can grow exponentially fast
in the long term, and the attractor is defined to be chaotic.
The Lyapunov exponents are ordered so that A, 24,2 -+,
ie, from largest to smallest. The signs of the exponents can
be used as a ciassification scheme for the attractor: ail
negative exponents implies a fixed point attractor, 4, =0
and all others negative imply a limit cycle (periodic orbit),
and A, >{ implies chaos. Note that this classification does
not distinguish between periodic flows of different peri-
odicity or between different chaotic flows. The magnitudes
of the Lyapunov exponents and the number of positive
exponents give more detailed information. A positive
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Lyapunov exponent indicates that there is a direction on the
attractor such that perturbations in that direction will grow
exponentiallv. The unavoidable uncertainty in a measure-
ment of the system state.will thus spread exponentially
rapidly. Even though the flow is confined to a region of
phase space (the attractor), it is not possible to predict the
system state with any certainty at arbitrary future times
(except to say that it is on the attractor). The more positive
Lyapunov exponents there are, the more directions of
instability on the atiractor exist, and thus the higher the
fractal dimension of the attractor becomes. This relation can
be made quantitative: the Kaplan-Yorke [14] conjecture
relates the Lyapunov exponent spectrum to the dimension

of the attractor:
D= (=_1’)
P n »
I/"m+ ll

where # s the largest number for which 377 | 7, 1s positive.
The fractal dimension can also be estimated directly from
time series data via a number of algorithms, e.g. the
Grassberger—Procaccia technique [15].

Tt is important to note the difference between the long-
time average Lyapunov exponent, 4;, and the short-time
contribution to that average at some time 1, 4,{¢). For sim-
plicity’s sake, consider only the largest Lyapunov exponent,

A,. While 2, may be positive, 1,(f) can be positive or:

negative and, in fact, the range of short-time contributions
is very large. Large positive or negative maxima in the
short-time contributions to a positive Lyapunov exponent
mark important moments in the evolution of the flow.
Furthermore, it can be shown [5] that the form of the per-
turbation corresponding to 4, at any given instant of time ¢
is unique and depends only on the phase space location of
the fiducial trajectory at that time. The orientation of a ran-
domiy chosen perturbation introduced at some earlier time
will approach this unique form exponentially rapidly. By
studying the short-time contributions to locate the impor-
tant times and then studying the form of the unique pertur-
bation corresponding to 4, at those times, it may be possible
to discover the physical instabilities driving the flow.
Vastano and Moser [ 5] have used this technique to show
that the transition to chaos in a closed flow system, Taylor—
Couette flow, is driven by a Kelvin-Helmholtz instability of
the azimuthal jet at the outflow boundary between the
large-scale Taylor vortices present in the flow.

All of the techniques for estimating the Lyapunov
exponents of an attractor involve following the evolution
of perturbations to some fiducial phase space trajectory
on the attractor. The simplest implementation assumes
no knowledge of the attractor beyond time series
measurements of the system state (see Wolf er al. [16] for
details). The method of time delays previousiy discussed is
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first used to obtain a full phase space reconstruction of the
attractor. Now to estimate %, foliow a fiducial trajectory
and use a neighbor of the first point on the trajectory to
define an initial separation. Evolve both points by stepping
through the time series. The separation must remain small
enough to be considered effectively infinitesimal. When the
separation grows too large (which it will if the attractor is
chaotic), replace the second data point with a new point,
chosen to maintain the orientation of the separation, but
reducing its length. The long-time average exponential
growth rate of the separation is an estimate of A;. To
estimate the first two Lyapunov exponents, follow the
evolution of the fiducial point and two other points defining
an small area, which will grow at the long-time average
exponential rate of 4, + A,. This method could be extended
to calculate more exponents, but the requirements for
replacement points become increasingly expensive to
evaluate. Since all of the perturbations are defined by actual
data points, large time series covering many fundamental
periods of oscillation may be necessary to obtain accurate
Lyapunov exponent estimates.

This technique was applied to time series data from each
of the chaotic flows studied here. Typically, a four- or five-
dimensional reconstruction of the attractor was used. The
variable parameters of the technique are the number of data
points used, the evolution time step for the perturbations,
and the length scale used. Extensive trials were made to
find the most probable value for the Lyapunov exponents
in each case. An independent technique (using the
Grassbherger—Procaccia [ 15] algorithm) was applied to the
data sets to estimate the dimension for each attractor. For
the Re = 1600 attractor a time series of 210,000 points was
used. It was found that A, =0.30 bits/orbit and 4,=0 to
within the uncertainty of the estimate. The dimension of this
attractor was estimated to be 2.25, using the same data set.
The Kaplan-Yorke conjecture would place a lower bound
of 2.0 on the attractor dimension in this case, so the
Lyapunov exponent estimates are compatible with the
dimension estimate.

For the Re=2000 attractor, the estimate of 4, rose to
1.08 bits/orbit, while again 4, was indistinguishable from
zero. A data set of 160,000 points was used here. The
estimated dimension of the attractor was 2.4, again in
general agreement with the Lyapunov exponents. For
Re = 3000, the highest value tested in detail, 148,000 points
were used to obtain estimates of i, = 1.2 bits/orbit and £,
apparently slightly positive but too close to zero to be quan-
tified. The dimension estimate for this data set rose to 3.4. If
there are two positive exponents, then the Kaplan—Yorke
formula sets the attractor dimension at no less than 3.0, so
again the Lyapunov exponent estimates agree with the
dimension estimate.

If the equations of motion for the system are known and
solvable, either analytically or numerically, then as many
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Lyapunov exponents as desired may be estimated by solv-
ing the full set of equations for the fiducial trajectory and
simultaneously evolving a set of N perturbations to estimate
N Lyapunov exponents. Ideally, the perturbations shouid
be infinitesimal and thus evolve according to the linearized
equations of motion about the fiducial trajectory. Unfor-
tunately, it is not always convenient numerically to obtain
the linearized equations of motion. Due to the conservative
formulation used in ARC2D and the triplet nature of some
terms, such as the convection of momentum, the perturba-
tion form of the equations is difficult and lengthy to form.
Instead, it is simpler to use the flow solver as a functional
operator, passing various solutions through it, so that all
functional attributes of the flow solver (e.g., boundary
conditions} can be brought to bear. In such cases, the fidu-
cial trajectory and a set of N perturbed trajectories are
evolved, all with the full nonlinear equations. The perturba-
tions are then found at any time by subtracting the fiducial
state vector from each perturbed state. As was noted earlier,
the volume spanned by the first & Lyapunov perturbations
grows like the sum of the first & Lyapunov exponents.
A computational difficulty arises because all of the
individual Lyapunov perturbations will collapse towards
the unique direction corresponding to 4,. To avoid this
problem, the perturbation vectors are periodically Gram—
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Schmidt reorthogonalized. This procedure alters the pertur-
bations but does not affect the orientation of the volume
spanned by the first & perturbations for all k. Therefore, the
volume will continue to grow at the correct rate. Also at this
time the perturbations are re-normaiized to their initial
amplitudes. See Vastano and Moser [5] for details. When
finite amplitude perturbations are used, it 1s essential to test
the effect of perturbation amplitude on the Lyapunov expo-
nent estimates. I the perturbations are small enough to be
effectively infinitesimal, then halving the amplitude will not
change the estimates.

In the computations performed here we have analyzed the
Re = 1600, 2000, and 3000 cascs. Random perturbations of
the base state are used to initialize the perturbed ficlds and
amplitudes on the order of 10— # based on order 1 flowfield
quantities were sufficiently small. Long term average 1, are
given for the Re = 1600, 2000, and 3000 in Figs. 16a—c. In all
three cases there is one positive Lyapunov exponent, one
zero exponent (to acceptable accuracy), and finally negative
values. Table I shows 4, for the various cases along with the
fractal dimension D;. Note that the increase in 2; is not due
to additional positive Lyapunov exponents but is, instead,
caused by a decrease in the magnitudes of the first few
negative exponents.

The numerically obtained Lyapunov exponents presenied
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TABLE1

Lyapunov Exponents from Perturbation Analysis

Lyapunov exponents and fractal dimension

Re = 1600 Re'= 2000 Re = 3000
+0.10067 +0.19348 +.52650
+0.00678 —0.00321 —0.00073
—0.22545 —0.16266 — 006945
—-0.27604 —-0.27182 —0,26022
—0.30910 —0.29130 —0.30011
—0.34065 —0.33226 —0.36016
D, D, D,
248 310 4.65

in Tablel are qualitatively similar to the Lyapunov
exponents previously obtained from the time series data.
The trend of one positive Lyapunov exponent that increases
with Reynolds number is observed in both sets of estimates.
The actual values of the exponents are very different,
however. This points out the difficulty in doing quantitative
comparisons between different systems using experimentally
obtained Lyapunov exponents, The numerically obtained
values for the dimension are also somewhat higher than was
indicated by the time series data, The trend of higher dimen-
sion with increasing Reynolds number is still evident and
these results are considered definitive evidence that the
solutions are chaotic.

The short-time contributions to the 4, in particular 4,,
and the corresponding perturbation fields contain informa-
tion as to the events associated with the production of
chaos. As an example, Fig. 17 shows contours of the pertur-
bation field convective derivative of the metric norm used in
the Gram-Schmidt process {dotted curve) and the vorticity
field (solid curves). These are taken at the time of maximum
short-time contribution to 4, the marked maximum in
Fig. 16d. The convective derivative field is an order of
magnitude stronger than the corresponding field at the min-

FIG. 17. Contours of vorticity (solid} and convective derivative of
perturbation metric (dashed) for Re = 3000.
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imum (also marked in Fig. 16d). While it is difficult to inter-
pret this data, one sees that the perturbation field intensity
is largest in between the two counterrotating vortices being
shed by the body. These vortices are at their largest size at
this time and at other times they are not interacting as
strongly. This static picture indicates that the physical
mechanism underlying the chaos (and likely the period-
doubling cascade as well) is a vortex—vortex interaction in
the immediate vicinity of the trailing edge of the awfoil and
that interactions between the shear layer and the vortices
or between downstream vortices do not play a sigaificant
role. Work is currently m progress to better analyze the
spatiotemporal structure of the perturbation field density
and its spatial and temporal derivatives in order to extract
a clearer picture of the chaos-generating mechanism.

VL. SUMMARY

Numerical computations of two-dimensional flow past an
airfoil at fow Mach number, large angle of attack and low
Reynolds number shows a sequence of flow states leading
from single-period vortex shedding to chaos via the period-
doubling mechanism. Analysis of the flow in terms of phase
diagrams, Poincaré sections, and flowfield variables has
been used to substantiate this result. Although the flow at
any particular Reynolds number in the transition regime is
sensitive to algorithm parameters (such as mesh refinement,
artificial dissipation level, and differencing accuracyj, the
basic result of period doublings to chaos exists. A separate
study, where the Reynolds number was fixed and the angle
of attack used as the bifurcation parameter, showed a
similar sequence of doublings to chaos. It should be
stressed, that the authors by no means are suggesting that
there is an equivalent physical flow. There is no experimen-
tal or theoretical evidence as to the physical realization of
this type of flow. At best one can say that the numerical
solution of the two-dimensional Navier-Stokes equations
gxhibits these mechanisms. At worst, we have a numerical
computation, somewhat sensitive to numerical parameters,
which shows a low-dimensional road to chaos.

High-dimensional chaos is easy to observe in fluid flows.
Unfortunately, the current state of the art in nonlinear
dynamics cannot contribute much new understanding of
these flows. To make any progress, model systems must be
found m which the transition to chaos is gradual, but in
which high-dimensional behavior does appear. The system
reported here is particularly encouraging: not only does it
display the desired gradual transition, but it also acts for a
significant range of Reynolds number as if it were governed
by a one-dimensional map. Now the task is to discover why
this behavior occurs and to see what implications this may
have for the structure and dynamics of high-dimensional
chaos in this and related systems.
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APPENDIX: NUMERICALLY GENERATED CHAOQS

Numericai experimentation only provides a limited
analysis of the effects of numerics and computational error
on the computed solutions of a system of equations. Typi-
cally, the numerical analyst relies on model problems, lincar
theory, and past experience as a guideline in assessing and
using numerical methods. Linear theory, while useful, can
sometimes fail to uncover all the interesting characteristics
of a method appiied to a nonlinear probiem. Recent work
{Priifer [17] and Lorenz [18]) has shown that simple
numerical solution techriques for a nonlinear ODE can
produce the equivalent of a chaotic map such as the logistic
map,

2"t = Rz"(1—-z7), (nH
which for 3 < R <4 produces the asymptotic behavior of z
as shown in Fig. 10. This figure was generated by iterating
Eq. (1) from the initial value z°=0.25 for 400 unplotted
iterations and then plotting z* for 401 < i < 600. For R=3.0
the asymptotic behavior is a fixed point, ie, z'*1=z"
At R=3.0, a period-doubling cascade to chaos begins,
followed by a region of mixed chaotic and periodic states up
to R=40 past which 7z’ diverges to infinity, lypically
characterized as instabiiity.

To see how such behavior can arise in a numerical
solution to an ODE consider the simple ODE

yi=yl=y) WO =y, O<yp<l ()
which has the well-behaved exact solution
Yo
Hty=————— (3)

T yet(1—yore "

A numerical solution may be obtained by applying Euler
explicit time differencing,
y =y ALy = ) = £ “)

Priifer [ 17] points out that Eq. (4) may be transformed into
Eq. (1) by substituting z" = (4¢/(! + Af)) y"and R =1+ A1.
Since we know Eq. (1) has the behavior shown in Fig. 10,
then for some As the solution given by Eq. (4) will behave
chaotically for some initial conditions. The true solution,
given by Eq. (3), is well behaved, as is clear from Fig. A1,

Let us examine the linear stability of the discrete
approximation given by Eq. (4). Linearizing Eq. (4) about
the fixed point y =1 yields

P (L ey (5)

which has the linear stability bound 47 < 2. The location of
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FIG. Al Solutions from different initial conditions for Eq. 2.

the bifurcation to the first period-two solution for the
iterative map is determined by solving the nonlinear system

u=fz), v=[(u)

for u, v in terms of d¢. The critical point y . is given by

(dey>— 4

1

_Q2+40+
Fr= 241

which only has real solutions for 4> 2.0, coinciding with
the linear stability bound. In this case the linear instability
bound is also the point at which the discrete map
approximation of the ODE bifurcates to a period-two
solution. Other discrete approximations to the Eq. (3) also
have linear stability bounds coinciding with bifurcation
boundaries, although this may not aiways be the case. For
example, MacCormack’s scheme has the linear stability
bound 4¢< 2.0 and bifurcation boundary 47> 2.0, but it
has a different bifurcation map past the boundary than

10T
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FIG. A2. Quadratic like chaotic map for MacCormack’s scheme.
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Euler explicit (i.e, the logistic map), see Fig. A2 for the
lower half of the bifurcation diagram past Ar=2.

Stuart [19] has studied systems of nonlinear PDEs
and has shown that for a fairly general class of nonlinear
reaction—diffusion equations, linearized instability leads to
spurious periodic solutions in the nonlinear discretization.

These results are rather interesting in that they imply that
there is a region of time steps where the solution is bounded
but not convergent to the correct solution. Above a certain
time step, one cbtains the expected response of unbounded
growth, but between the linear stability bound and the
unstable limit the numerical solution can behave as above,
i.e., chaotically, This implies that in some situations, a new
region of “unusual” stability can be defined. An example
where one may take advantage of this behavior would be for
stiff reaction equations where one part of a system lies in this
bounded (but chaotic) region and other parts in the fixed-
point region. This opens up a new avenue of research into
“nonlinear stabiiity theory” which extends the usual “linear
stability bounds.”™ In practice, numerical analysts rely upon
linear stability theory to determine limits for integrations.
But this new area, especially when applied to basicly non-
linear equations such as the Navier-Stokes equations, may
lead to new understanding and algorithms,
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